

	
3GPP TSG-SA WG4 Meeting #88	S4-160386
Memphis, USA, 18-22 April, 2016
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	26.445
	CR
	0014
	rev
	-
	Current version:
	12.6.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	X
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Corrections to the Algorithmic Description

	
	

	Source to WG:
	Ericsson LM, Fraunhofer IIS, Huawei Technologies Co. Ltd, Nokia Corporation, NTT,
NTT DOCOMO, INC., ORANGE, Panasonic Corporation, Qualcomm Incorporated, Samsung Electronics Co., Ltd., VoiceAge and ZTE Corporation

	Source to TSG:
	S4

	
	

	Work item code:
	EVS_Codec
	
	Date:
	2016-04-18

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-12

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)

	
	

	Reason for change:
	Following a review of the text, several errors have been identified in the main body of the text.

	
	

	Summary of change:
	Correction of errors in the text and clarification of confusing descriptions.

	
	

	Consequences if not approved:
	Inconsistencies, innaccuracies and possible ambiguities will be present in the text.

	
	

	Clauses affected:
	5.1.13.2, 5.1.13.6.5, 5.1.14.2, 5.1.14.4, 5.2.6.1.6, 5.2.6.1.11, 5.3.3.2.8.1.8.4, 5.3.4.1.4.3.2.1, 5.3.4.1.4.1.5.3.3.1, 5.3.4.1.4.1.5.3.3.2, 6.2.2.3.11, 6.2.3.1.1, 6.2.3.1.2.1.2, 6.2.3.1.3.3.4.3.1, 6.2.3.1.3.3.4.3.3, 6.2.3.1.3.3.4.3.7, 6.2.3.2.1.3.2.3, 6.3.3.2.1.1

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

[bookmark: _Ref386127929][bookmark: _Toc393984311][bookmark: _Toc394238716][bookmark: _Toc394224258]5.1.13.2	Stable voiced signal classification
…
The smoothing of the normalized correlation is done as follows
		(309)

Finally, VC mode is also selected in frames for which the flag = Stab_short_pitch_flag = flag_spitch has been previously set to 1 in the module described in sub-clause 5.1.10.8. Further, when the signal has very high pitch correlation, is also set to 1 so that the VC mode is maintained to avoid selecting Audio Coding (AC) mode later, as follows,
If (=1 or

 (dpit1 <= 3f AND dpit2 <= 3 AND dpit3 <= 3 AND Voicing_m > 0.95 AND Voicing_sm > 0.97) or

 (AC_old=0 AND Voicing_sm> 0.97))
{
	VC = 1;
	=1
}

wherein , , , Voicing_m and Voicing_sm are defined in subclause 5.1.13.1.1 5.1.10.8, and AC_old=0 means the previous Audio Coding mode is not selected.

The decision taken so far (i.e. after UC and VC mode selection) is called the “raw” coding mode, denoted. The value of this variable from the current frame and from the previous frame is used in other parts of the codec.

[bookmark: _Toc394224244]5.1.13.6.5	Improvement of the classification for mixed and music content
…

		(345)

where and denote respectively the log energy spectrum of the current frame and the log energy spectrum of the frame two frames ago, denotes the number of local peaks. If = 0, is set to 5. The computed is stored into a buffer of 60 frames if there is no sound attack in the past 3 frames (including the current frame), that is if . Moreover, if the long-term speech/music decision is greater than 0.8 meaning a strong music signal in previous classifications, then the value of is upper limited to 20 before it is stored into the . The buffer is initialized altered at every first active frame after an inactive segment (flagged by) that all values in the buffer excluding the one just calculated and stored for the current frame are set changed to negative values.

The effective portion of the buffer is determined in each frame after the calculation and buffering of the parameter. The effective portion is defined as the portion in the buffer which contains continuous non-negative values starting from the value of the latest frame . If percussive music is detected, that is if the percussive music flag is set to 1, each value in the effective portion of the buffer is initialized to 5.

The tilt parameter of the LP analysis residual energies is calculated as

		(346)

		(346)

where is the LP error energies computed by the Levinson-Durbin algorithm. The computed is stored into a buffer of 60 frames.

The high-band spectral peakiness parameter reflects an overall tonality of the current frame at its higher frequency band and is calculated from the peak to valley distance map as

		(347)

The calculated is stored into a buffer of 60 frames.

The three tonal parameters , and are also calculated from the peak to valley distance map . denotes the first number of harmonics found from the spectrum of the current frame. is calculated as

		(348)

 denotes the second number of harmonics also found from the spectrum of the current frame. is defined more strictly than and is calculated as

		(349)

denotes the number of harmonics found only at the low frequency band of the current frame’s spectrum and is calculated as

		(350)

The calculated values of , and are stored into their respective buffers , and all of 60 frames.

The sum of correlation map as calculated by

		(351)

is also stored into a buffer of 60 frames, where is the correlation map calculated in subclause 5.1.11.2.5.

The voicing parameter is defined as the difference of log-likelihood between speech class and music class as calculated in subclause 5.1.13.6.3. The is calculated as

		(352)

where , are the log-likelihood of speech class and the log-likelihood of music class respectively. is stored into a buffer of 10 frames.

The speech/music decision is obtained through a tree-based classification. The is first initialized as a hysteresis of the long-term speech/music decision from the previous frame, i.e.

		(353)

where the superscript [-1] denotes the value from the previous frame. Then, the can be altered through successive classifications. Let denotes the length of the effective portion in. Depending on the actual value of , different classification procedures are followed. If , insufficient data is considered in the feature parameter buffers. The classification is terminated and the initialized is used as the final . If , the respective mean values , and are calculated from , and over the effective portion and the variance , calculated over the effective portion from is also obtained. In addition, the number of positive values among the 6 latest values in is counted. The speech/music decision is then set to 1 if and any of the following conditions is fulfilled; or or or . Otherwise, if , the feature buffers are first analysed over the portion containing the latest 10 values. The mean values , and are calculated from, and over and for the same portion the variance is also calculated from .Besides, the mean value of, over a shorter portion of the latest 5 frames is also calculated. The is found as the number of positive values in. The speech/music decision is determined without the need to analyse any longer portion if strong speech or music characteristics are found within , that is, the and are both set to 1 if and and any of the following conditions is fulfilled: or or or . The and are both set to 0 if any of the following conditions is fulfilled: or or or . If no class is determined for over the values, the is determined iteratively over portions starting from until the whole effective portion is reached. For each iteration, the respective mean values, and are calculated from, and over the portion under analysis and for the same portion the variance is also calculated from . The mean value is calculated from over , and the number of positive values in ,, is also counted. The value of is set to 1 if and any of the following conditions is fulfilled: or or or . If through the above iteration procedure the is not set and if the effective portion reaches the maximum of 60 frames, a final speech/music discrimination is made from , and . The mean value of the , the sum value of the , and the sum value of the are calculated over the whole buffers. A low frequency tonal ratio is calculated as

		(354)

The is set to 1 if or . Otherwise, if , the is set to 0.

If is greater than 30, then both the two long-term speech/music decisions and are updated at each frame with as

[bookmark: LT_SM]		(355)

[bookmark: LT_SM1]		(356)

where the superscript [-1] denotes the value from the previous frame. If the total frame energy calculated in subclause 5.1.5.2 is greater than 1.5 and is less than 2 and the raw coding mode is either UNVOICED or INACTIVE, then an unvoiced counter initialized to 300 at the first frame is updated by

		(357)

Otherwise, is incremented by 1. The value of is bounded between [0, 300]. The is further smoothed by an AR filtering as

		(358)

where is the smoothed , the superscript [-1] denotes the value from the previous frame. If is set to 1 in any previous stage, the flag is overridden by unless the long-term speech/music decision as calculated in equation (356) is close to speech and the smoothed unvoiced counter exhibits strong unvoiced characteristic, that is, the is set to 1 if and .

[bookmark: _Toc394238189]5.1.14.2	TCX/HQ MDCT technology selection at 13.2 and 16.4 kbps
…
is the averaged energy only for the local minima of the spectrum. With the notation of 5.1.11.2.5, it is defined as:
	.	(443)
Correlation map sum, is defined in 5.1.11.2.5.
Indication of possible switching, =TRUE when previous core was not Transform coding, or followings are satisfied.
	,	.(444)

	,	.(444)
where and are and at the previous frames. Note that is integer from -1 to 2, while others are all Boolean.
Indication of preference for TCX, = TRUE when followings are satisfied:
		.(445)
Indication of preference for HQ MDCT, = TRUE when followings are satisfied:
	,	(446)
where transient_frame is the output of the time-domain transient detector (see 5.1.8). For 16.4 kbps, is set to FALSE and to TRUE when transient_frame is detected.
Based on the above definitions and thresholds listed in the table below, switching between HQ and MDCT based TCX is carried out as follows. Switching between HQ and TCX can only occur when is TRUE. In this case, TCX is used if is TRUE, or otherwise HQ is used if is TRUE. In any other case, the same kind of transform coding is applied as in the previous frame. If the previous frame was not coded by transform coding, HQ is used for the low rate (13.2 kbps) and TCX for the high rate (16.4 kbps).
In case input signal is noisy speech (noisy_speech_flag==TRUE && vadflag== FALSE) , transition from TCX to HQ is prohibited at 16.4 kbps.
 is reset to 0 if is FALSE, otherwise it is incremented by one (with a maximum allowed value of 2)
 and are reset to FALSE and -1, respectively, upon encoder initialization or when a non-transform-coded frame is encountered.
Table 22: List of thresholds used in TCX/HQ MDCT (Low Rate HQ) selection
	Parameter
	Meaning
	13.2 kbps
	16.4 kbps

	SIG_LO_LEVEL_THR
	Low level signal
	22.5
	23.5

	SIG_HI_LEVEL_THR
	High level signal
	28.0
	19.0

	COR_THR
	correlation
	80.0
	62.5

	VOICING_THR
	voicing
	0.6
	0.4

	SPARSENESS_THR
	sparseness
	0.65
	0.4

	HI_ENER_LO_THR
	High energy low limit
	9.5
	12.5

	HYST_FAC
	Hysteresis control
	0.8
	0.8

	MDCT_SW_SIG_LINE_THR
	Significant Spectrum
	2.85
	2.85

	
	Significant peak
	36.0
	36.0

5.1.14.4	TD/Multi-mode FD BWE technology selection at 13.2 kbps and 32 kbps
The input WB or SWB signal is divided into low band signal and high band signal (wideband input) or super higher band signal (super wideband input). Firstly, the low band signal is classified based on the characteristics of the low band signal and coded by multi-mode FD BWE or TD BWE the LP-based approach or the transform-domain approach.
The selection between TD BWE and multi-mode FD BWE technology of super higher band signal or high band signal at 13.2 kbps (WB and SWB) and 32 kbps (SWB) is performed based on the characteristic of the input signal and coding modes of the low band signal. Except for MDCT mode, if the input signal is classified as music signal, the high band signal or the super higher band signal is encoded by multi-mode FD BWE;if the input signal is classified as speech signal, the high band signal or the super higher band signal is encoded by TD BWE. In the case that the low band signal is classified as IC mode, the high band signal or the super higher band signal is also encoded by multi-mode FD BWE.
If the decision in the first stage of the speech/music classifier, i.e. the input signal is classified as music signal, or the decision in the first stage of the speech/music classifierand the decision in the second stage of the speech/music classifier, or the low band signal is classified as IC mode, the high band or the super higher band signal is encoded by multi-mode FD BWE, otherwise, the high band or super higher band signal is encoded by TD BWE. It is noted that, when the flag of the super wideband noisy speech, the super higher band is encoded by TD BWE. It is the same TD/multi-mode FD BWE technology selection for FB inputs.

5.2.6.1.6	Generation of the upsampled version of the lowband excitation
…
For each ACELP core coding subframe, i, a random noise scaled by a factor voice factor, [image:] is first added to the fixed codebook excitation that is generated by the ACELP core encoder. The voice factor is determined using the subframe maximum normalized correlation parameter, [image:] that is derived during the ACELP encoding. First the [image:] factors are combined to generate [image:].
	[image:]	(695)
[image:] calculated above is limited to a maximum of 1 and a minimum of 0.
[image:] if the ACELP core encodes a maximum of 6.4 KHz or [image:] if the ACELP core encodes a maximum bandwidth of 8 KHz.
The resampled output is scaled by the ACELP fixed codebook gain and added to a delayed version of itself.
	[image:]	(696)

		(696)
[bookmark: _Toc422343184][bookmark: _Toc430512265][bookmark: _Toc398138318]where gc is the subframe ACELP fixed codebook gain, gp is the subframe ACELP adaptive codebook gain and P is the open loop pitch lag.
[bookmark: _Toc393896684][bookmark: _Toc393897608][bookmark: _Toc393897855][bookmark: _Toc394072153][bookmark: _Toc394072750][bookmark: _Toc394179157][bookmark: _Toc394417775][bookmark: _Toc394416086][bookmark: _Toc394386190]

5.2.6.1.11	Envelope modulated noise mixing
…
If the lowband coder type is unvoiced, the excitation [image:] is first rescaled to match the energy level of the whitened excitation [image:]
	[image:]	(717)
where
	[image:]	(718)
And then pre-emphasised with [image:]=0.68 to generate the final excitation which is the de-emphasised effect since the used spectrum is flipped.
	[image:]	(719)
If the lowband coder type was not un-voiced, the final excitation is calculated as

	[image:]	(720)		(720)

For bit rates less than 24.4 kb/s, the mixing parameters [image:] and [image:] are estimated for other low band coder types as,
	[image:]	(721)
	[image:]	(722)

For bit rates 24.4 kb/s and 32 kb/s, the mixing parameters [image:]is , are estimated for other low band coder types as follows:
	[image:]	(723)

		(723a)
where the parameter [image:] is defined in equation (731).

 is then de-emphasised to generate the final excitation.
For bit rates 24.4 kb/s and 32 kb/s, the mixing parameter [image:] is calculated as for bit rates at 13.2 kbps and 16.4kbps.

[bookmark: _Toc393726276][bookmark: _Toc394084365][bookmark: _Toc394330759]5.3.3.2.8.1.8.4	Decision of harmonic model

At the initial estimation, number of used bits without harmonic model, [image:], and one with harmonic model, [image:]is obtained and the indicator of consumed bits [image:]are is defined as
	[image:],	(945)

	,	(945)
	[image:],	(946)
	[image:],	(947)

where [image:]denotes the additional bits for modelling model parameters of periodic harmonic structure, and[image:] and [image:]indicate the consumed bits when they are larger than the target bits. Thus, the larger[image:], the more preferable to use harmonic model. Relative periodicity [image:]is defined as the normalized sum of absolute values for peak regions of the shaped MDCT coefficients as
	[image:],	(948)

5.3.4.1.4.3.2.1	Allocating bits for fine gain adjustment
Bit-allocation process is performed in the following manner when the signal is classified as harmonic. Firstly, two bits are reserved for transmitting the noise factor information (cf. Sec.5.3.4.1.4.3.3.3.6) followed by four bits are allocated for performing gap filling using PFSC based approach. Then some bits are reserved for applying fine gain quantization to the band energies that are larger than the others.
…

[bookmark: hq_lr_Sec_representativeMDCT][bookmark: _Toc394254283][bookmark: _Toc394416074]5.3.4.1.4.1.5.3.3.1	Selection of representative MDCT coefficients
Similarly to G.718 Annex B, a band search approach is used. The last four bands (i.e. b=18 to 21 in 13.2 kbps and b=20 to 23 in 16.4 kbps) are then subject to be encoded with PFSC. As shown in the table 108, the widths of the bands are 55, 68, 84, and 105 for 13.2 kbps, and 59, 74, 92, and 115 for 16.4 kbps.
To reduce computational load for calculating correlation, only limited number of input (target) MDCT coefficients are selected as representative MDCT coefficients and used for correlation calculation. The selection of the MDCT coefficients is performed by amplitude threshold process, i.e. an MDCT coefficient is selected if its absolute value is greater than a threshold. The threshold is determined using the average and standard deviation of the absolute values of the MDCT coefficients in a subjected high-frequency band.
	[image:]	(1104)
Here [image:]is the initial threshold for the i-th high-frequency band, [image:] is the average of the absolute values of the MDCT coefficients in the i-th high-frequency band, [image:] is the standard deviation of the absolute values of the MDCT coefficients in the i-th high-frequency band, and [image:] is a factor for controlling the selected number of the MDCT coefficients. [image:]is chosen so that a calculated threshold becomes higher than a threshold which is expected to be appropriate for selecting the limited number of the MDCT coefficients.
If the number of selected MDCT coefficients is less than a pre-determined number, the threshold is updated by the following equation, and an additional selection process is performed.
	[image:]	(1105)
Here, [image:] is the weakest attenuation factor and [image:]is the strongest attenuation factor, and [image:]. [image:] is the pre-determined number of the MDCT coefficients to be selected in the end, and [image:] is remaining number of MDCT coefficients to be selected. [image:] is the updated threshold. By using this equation, the threshold is calculated according to the number of non-selected MDCT coefficients, i.e. the larger the number of non-selected MDCT coefficients is, the lower the threshold become. The above equation is equivalent to the following equation. [image:] is the number of already selected MDCT coefficients.
	[image:]	(1106)
This threshold update is performed twice using a different set of [image:] and [image:] unless the number of selected MDCT coefficients does not reach the pre-determined number.
The selected MDCT coefficients (target MDCT coefficients for the band search) are stored in a memory as their frequency positions and used for the band search process.

[bookmark: _Toc394254284][bookmark: _Toc394416075]5.3.4.1.4.1.5.3.3.2	Matching process
Once the representative MDCT coefficients are selected, a matching process is performed by calculating the correlation between the representative MDCT coefficients and normalized low-frequency MDCT coefficients derived from the envelope normalized MDCT coefficients calculated in subclause 5.3.4.1.4.1.5.3.2. Since the correlation is calculated only using the selected MDCT coefficients, required computational complexity can be saved.
The task of the matching process is to find k' which maximizes S(k').
[bookmark: hq_lr_Eq_matching_corr]	[image:]	(1107)
where [image:], [image:]and [image:] denote the following.
[image:] : correlation between representative MDCT coefficients and normalized low-frequency MDCT coefficients for the k’-th lag candidate,
[image:] : energy of normalized low-frequency MDCT coefficients for the k’-th lag candidate
[image:] : number of lag candidates for the j-th band.
[image:] and [image:] are calculated by the following equations.
	[image:]	(1108)
	[image:]	(1109)
[image:], [image:], [image:] and [image:] denote the followings.
[image:]: selected number of representative MDCT coefficients in the j-th band,
[image:]: frequency position of the k-th representative MDCT coefficient in the j-th band,
[image:]: the k’-th lag candidate for the j-th band,
[image:]: starting frequency position of normalized low-frequency MDCT coefficients for the j-th band.
The lag candidates are defined as the frequency positions of non-zero normalized low-frequency spectrum. Therefore [image:] means the k’-th non-zero normalized low-frequency MDCT coefficients frequency position in the j-th band search range. The j-th sub-band search range is started at[image:], which is defined as offsets from the zero frequency point of the low-frequency spectrum. [image:]= {0, 0, 64, 64}
By using this lag candidate representation, even when the bit budget for the lag information is small, actual lag search range can be wide, and it enables to guarantee to generate candidate spectra which have at least one non-zero spectrum.
figure 76 shows a conceptual block diagram of the matching process. For the lag search, only the TCQ quantized component is used as the low-frequency MDCT coefficients while both of the TCQ-quantized and noise-filled low-frequency MDCT coefficients are used for generating high-frequency spectrum and calculating the scaling factors.
The best k', which maximizes S(k'), is packed into the bit stream as an encoded parameter of the best lag candidate.

6.2.2.3.11	IGF temporal flattening

The reconstructed signal by IGF is temporally flattened in the frequency domain when . The temporal flattening is performed in a frequency-selective manner as follows.
The selection of the spectral contents to be temporally flattened is done by comparing the quantized spectral coefficients with 0 and the contents whose coefficients are quantized to 0 are selected.
In order to maintain the significant spectral contents, they are temporarily replaced by the spectra which are similarly generated to the filled spectra by IGF:

		(1803)

		(1803)

where is the quantized MDCT coefficient after arithmetic decoding and is the reconstructed MDCT coefficient by IGF.

The linear prediction of the spectra is done and the linear prediction coefficients are calculated. Then the temporally flattened spectrum is given by the following filtering:

	.	(1804)
Finally, the significant spectral contents are restored by:

	,	(1805)

	,	(1805)

and then the frequency-selectively temporally flattened spectrum is output to IMDCT for getting the time domain signal.

[bookmark: _Toc393887655][bookmark: _Toc394084515][bookmark: _Toc394417778]
6.2.3.1.1	Mode decoding
Based on the encoded bandwidth and operated bit-rate, mode information is decoded from 1 or 2 bits. Based on the decoded mode information, decoding configurations like band structures are set. The band structure definition for NB, WB, SWB, and FB is the same as encoder presented in table 88 103 to 93108.

[bookmark: _Toc394084519][bookmark: _Toc394318674][bookmark: _Toc394417782][bookmark: hq_lr_resized_huffman_decoding]6.2.3.1.2.1.2	Resized Huffman decoding mode
If IsTransient is True
If the frame is Transient, the Huffman decoding is then performed on the transmitted differential indices. The Huffman codes for the differential indices are given in table 101111 in subclause 5.3.4.1.3.3.
If IsTransient is False

For Non-Transient frames, the Huffman decoding is then performed on the transmitted differential indices. The Huffman codes for decoding the indices are given in table 105115 in subclause 5.3.4.1.3.3.3. The differential indices decoded using table 105115 takes the form, the decoded differential indices are reconstructed which is exactly reverse to the encoder described in subclause 5.3.4.1.3.3.3 equation (9051040). The way to reconstruct the differential index, which corresponds to the modification in encoder, can be done as shown in the following equation.

		(1809)

[bookmark: _Toc394417808]6.2.3.1.3.3.4.3.1	Overview

This subclause is only applied to SWB and FB input signals. The spectral coefficients which belong to bands which are assigned zero bits from the bit‑allocation subclause are not quantized. This means that not all transform coefficients are transmitted to the decoder. From the noise filled quantized spectrum, the gaps in the high frequency region which has zero bit allocation are identified and are filled with the new generated spectrum. The predicted spectrum is generated using normalized noise filled quantized spectrum described in subclause 6.2.3.1.3.3.4.3.2.

Based on the bit allocation described in subclause 6.2.3.1.3.3.3, if any of is allocated with zero bits, the corresponding band with start and end positions according to table 98 108 in thehas a gap and it is filled with the predicted spectrum described in subclause 6.2.3.1.3.3.4.3.5 corresponding to .in

[bookmark: _Toc394084542][bookmark: _Toc394318696][bookmark: _Toc394417810]6.2.3.1.3.3.4.3.3	Decoding of lag index

Lag index for sub-bands i=0,1 is decoded from the bit stream. For sub-bands 0 and 1, the starting position using lag index is defined in equation (10241147) and end of the desired portion is defined equation (10251148).
Based on the starting position and width of search band the predicted spectrum is generated from the envelope normalized noise filled quantized spectrum. The detailed description of the predicted spectrum generation is described in following subclause 6.2.3.1.3.3.4.3.5.

[bookmark: _Toc394084546][bookmark: _Toc394318700][bookmark: hq_lr_Sec_signal_gen_pred_spec_dec][bookmark: _Toc394417814]6.2.3.1.3.3.4.3.7	Signal generation for predicted spectrum

First, the tonal components is extracted from the desired portion of envelope normalized quantized spectrum which is described below. The start position and the end of each desired portion in the normalized quantized spectrum is the same as equations (10241147) and (10251148): As the normalized quantized spectrum characteristics are flat all the values during the normalization process will have similar values, all the non-zero coefficients in the desired region of is identified as follows

		

where, are defined as follows

 is the tonal resolution obtained from the normalized quantized spectrum for sub band i=0,1

 is the tonal components extracted from the normalized quantized spectrum for sub band i=0,1

The tonal information, for i=0, 1 obtained from normalized quantized spectrum is used for sub band i=2, 3.

Based on the band definition described in table 98108, the high frequency band ranges are defined. Using the band definitions for high frequency region, the extracted tonal components and its corresponding pulse resolutions are restructured, now the restructured is used for generating predicted spectrum. For example, the restructured information for sub band i=0 is equivalent to

[bookmark: _Toc393281291][bookmark: _Toc393306286][bookmark: _Toc393628458][bookmark: _Toc393726395][bookmark: _Toc394084561][bookmark: _Toc394417829]6.2.3.2.1.3.2.3	Noise level adjustment
After the fine structure of the spectral holes has been determined, the noise-filled part of the spectrum is attenuated according to the received NoiseLevel index. In the case of transient mode, the NoiseLevel is not estimated in the encoder and is automatically set to the value corresponding to zero index, i.e., 0 dB.
This operation is summarized by the following equation:
		(1834)
For SWB processing at 24.4 or 32 kbps in case of low spectral stability, an additional adaptive noise-fill level adjustment is employed. First, an envelope adjustment vector is derived according to the following pseudo-code:
For ,
	if ,
	if ,
	if
	if ,
	
	else
	
	else
	
	else
	if and ,
	
	else
		
	else
	

 where . Further, denotes the number of pulses for band as described in subclause 5.3.4.2.7, where corresponds to the case when zero bits are assigned to band . In short it permits strong attenuation for short bands where the neighboring bands are quantized, and gradually less when these requirements are not fulfilled. Once has been obtained, attenuation regions of consecutive bands where are identified. The attenuation for each of these regions are adjusted according to
		(1835)
…

[bookmark: _Toc394321739][bookmark: _Toc394347338]6.3.3.2.1.1	Optimized cubic interpolation
The missing signal at the output sampling frequency is partly available in the memory buffer at the internal sampling frequency, 12.8 kHz or 16 kHz. By doing low delay resampling like interpolation method of this memory a good estimation of the missing signal can be obtained. Third order cubic interpolation is used here, where cubic curves are used to interpolate the output values within 3 input interval delimited by 4 input samples. Respectively, in each input interval the interpolation can be made by using 3 different cubic curves. To further improve the quality of this estimation the interpolated samples are obtained by computing a weighted mean value of the possible cubic interpolated values computed on the plurality intervals covering the time position of the sample to interpolate.

The length of the resampling buffer (input to cubic interpolation) is 1.25 ms (16 samples at 12.8 kHz sampling rate or 20 samples at 16 kHz sampling rate) plus 2 past samples used as memory for the first cubic interpolations of the first 2 intervals. In cubic interpolation, 4 consecutive input samples determinate a cubic curve, the general equation of this curve is . To simplify the computations of the coefficients the temporal index of the 4 consecutive input samples are always considered as , , and and so they define 3 intervals, [-1, 0], [0, 1] et [1, 2]. Noting the values of these 4 input samples, , and, the coefficients , , and can be computed as:

		(1931a)

		(1931b)

		(1931c)

		(1931d)

To get the output resampled signal often the value of the output is needed to be determined between two input samples, in the interval limited by these input samples. As mentioned above, in cubic interpolation one cubic curve covers 3 intervals and respectively each interval can be covered by 3 different cubic curves: by the interval central [0, 1] of the central cubic curve or by the interval [1,2] of the previous cubic curve or the interval [-1, 0] of the next cubic curve. In the following the index corresponds to the beginning of the input interval where the output interpolated sample is computed. Let’s note the coefficients of the cubic curve of which the central interval is used , , , , the coefficients of the previous cubic curve , , , and the coefficients of the next cubic curve , , , . This gives 3 possible values for a given time instant ,

		(1931e)

		(1931f)

		(1931f)

		(1931g)

The interpolated output value for a given instant is computed as the weighted mean value of these 3 possible interpolated values:

		(1931h)

[bookmark: _GoBack]The weights used are same for each interpolated value, ===1/3. To reduce the complexity the values of x/3, x2/3, x3/3, (x-1)/3, (x-1)2/3, (x-1)3/3, (x+1) /3, (x+1)2/3, and (x+1)3/3, are tabulated for all possible values of needed for the interpolations. So the weighting by 1/3 is integrated in these tables, only the coefficients , and are needed with a multiplication by 1/3 when the output value is computed. For example to upsample from 12.8 kHz to 32 kHz the required values of are 0.2, 0.4, 0.6 and 0.8.
The last 2intervals cannot be covered by 3 cubic curves as future samples are not available to compute all curves. Here simplified interpolation is used. For the last but one input interval the central interval of the last possible cubic curve is used to compute the interpolated signal:

		(1931i)
and for the last input interval the interval [1,2] of the same last cubic curve is used to compute the interpolated signal

		(1931j)
In case of subsampling, the output samples after the last input sample cannot be interpolated, that causes a small delay of up to 3 output samples.

*** End of changes ***

image37.wmf
(

)

å

=

>

=

126

0

2

80

)

(

2

k

v

p

k

MAP

NT

oleObject54.bin

oleObject55.bin

image38.wmf
(

)

å

=

>

=

64

0

2

80

)

(

k

v

p

l

k

MAP

NT

oleObject56.bin

oleObject57.bin

oleObject58.bin

oleObject59.bin

image39.wmf
)

(

i

BUF

NT

oleObject60.bin

image1.wmf
fr

fr

fr

C

C

C

25

.

0

75

.

0

]

1

[

]

0

[

+

=

-

image40.wmf
)

(

2

i

BUF

NT

oleObject61.bin

image41.wmf
)

(

i

BUF

l

NT

oleObject62.bin

image42.wmf
sum

m

oleObject63.bin

image43.wmf
å

=

=

127

0

)

(

j

cor

sum

j

M

m

oleObject64.bin

image44.wmf
59

...

1

,

0

),

(

=

i

i

BUF

sum

m

oleObject65.bin

image2.wmf
spitch

f

image45.wmf
)

(

j

M

cor

oleObject66.bin

image46.wmf
vm

oleObject67.bin

oleObject68.bin

image47.wmf
m

s

L

L

vm

-

=

oleObject69.bin

image48.wmf
s

L

oleObject70.bin

image49.wmf
m

L

oleObject1.bin

oleObject71.bin

oleObject72.bin

image50.wmf
9

...

1

,

0

),

(

=

i

i

BUF

vm

oleObject73.bin

image51.wmf
M

S

f

¢

oleObject74.bin

oleObject75.bin

image52.wmf
M

S

LTf

¢

oleObject76.bin

image53.wmf
ï

î

ï

í

ì

>

=

-

¢

¢

otherwise

LTf

if

f

M

S

M

S

0

5

.

0

1

]

1

[

image3.wmf
spitch

f

oleObject77.bin

oleObject78.bin

image54.wmf
LEN

oleObject79.bin

oleObject80.bin

oleObject81.bin

image55.wmf
5

£

LEN

oleObject82.bin

oleObject83.bin

oleObject84.bin

image4.wmf
m

Voicing

image56.wmf
10

5

<

<

LEN

oleObject85.bin

image57.wmf
h

pk

M

oleObject86.bin

image58.wmf
sum

m

M

oleObject87.bin

image59.wmf
NT

M

oleObject88.bin

image60.wmf
)

(

i

BUF

h

pk

oleObject89.bin

oleObject2.bin

image61.wmf
)

(

i

BUF

sum

cor

oleObject90.bin

image62.wmf
)

(

i

BUF

NT

oleObject91.bin

image63.wmf
tilt

V

oleObject92.bin

image64.wmf
)

(

i

BUF

tilt

oleObject93.bin

image65.wmf
6

vm

N

oleObject94.bin

image5.wmf
sm

Voicing

image66.wmf
)

(

i

BUF

vm

oleObject95.bin

oleObject96.bin

image67.wmf
4

6

<

vm

N

oleObject97.bin

image68.wmf
1100

>

h

pk

M

oleObject98.bin

image69.wmf
100

>

sum

m

M

oleObject99.bin

image70.wmf
00008

.

0

<

tilt

V

oleObject3.bin

oleObject100.bin

image71.wmf
27

>

NT

M

oleObject101.bin

image72.wmf
10

>

LEN

oleObject102.bin

image73.wmf
10

POR

oleObject103.bin

image74.wmf
10

flux

M

oleObject104.bin

image75.wmf
10

h

pk

M

image6.wmf
sm

Voicing

oleObject105.bin

image76.wmf
10

sum

m

M

oleObject106.bin

image77.wmf
)

(

i

BUF

flux

oleObject107.bin

oleObject108.bin

image78.wmf
)

(

i

BUF

sum

m

oleObject109.bin

image79.wmf
10

POR

oleObject110.bin

oleObject4.bin

image80.wmf
10

tilt

V

oleObject111.bin

oleObject112.bin

oleObject113.bin

image81.wmf
5

flux

M

oleObject114.bin

image82.wmf
vm

N

oleObject115.bin

oleObject116.bin

oleObject117.bin

image7.wmf
]

1

[

]

0

[

1

OL

OL

T

T

dpit

-

=

oleObject118.bin

oleObject119.bin

image83.wmf
M

S

LTf

¢

oleObject120.bin

image84.wmf
3

<

vm

N

oleObject121.bin

image85.wmf
15

5

<

flux

M

oleObject122.bin

image86.wmf
5

.

8

10

<

flux

M

oleObject123.bin

oleObject5.bin

image87.wmf
1050

10

>

h

pk

M

oleObject124.bin

image88.wmf
100

10

>

sum

m

M

oleObject125.bin

image89.wmf
12

&

&

001

.

0

10

10

<

<

flux

tilt

M

V

oleObject126.bin

oleObject127.bin

image90.wmf
M

S

LTf

¢

oleObject128.bin

image91.wmf
16

10

>

flux

M

image8.wmf
]

2

[

]

1

[

2

OL

OL

T

T

dpit

-

=

oleObject129.bin

image92.wmf
19

5

>

flux

M

oleObject130.bin

image93.wmf
2

&

&

15

10

>

>

vm

flux

N

M

oleObject131.bin

image94.wmf
0

&

&

20

)

59

(

>

³

vm

BUF

flux

oleObject132.bin

oleObject133.bin

oleObject134.bin

oleObject135.bin

oleObject6.bin

oleObject136.bin

image95.wmf
flux

M

oleObject137.bin

image96.wmf
h

pk

M

oleObject138.bin

image97.wmf
sum

m

M

oleObject139.bin

oleObject140.bin

oleObject141.bin

oleObject142.bin

image9.wmf
]

3

[

]

2

[

3

OL

OL

T

T

dpit

-

=

oleObject143.bin

oleObject144.bin

oleObject145.bin

oleObject146.bin

oleObject147.bin

oleObject148.bin

oleObject149.bin

oleObject150.bin

image98.wmf
3

<

vm

N

oleObject151.bin

oleObject7.bin

image99.wmf
15

&

&

)

10

(

05

.

0

12

10

<

-

×

+

<

flux

flux

M

LEN

M

oleObject152.bin

image100.wmf
)

10

(

000018

.

0

0001

.

0

-

×

+

<

LEN

V

tilt

oleObject153.bin

image101.wmf
)

10

(

5

1050

-

×

-

>

LEN

M

h

pk

oleObject154.bin

image102.wmf
)

10

(

3

.

0

95

_

_

-

×

-

>

LEN

M

sum

map

cor

oleObject155.bin

image103.wmf
)

10

(

3

.

0

95

-

×

-

>

LEN

M

sum

m

oleObject156.bin

oleObject8.bin

oleObject157.bin

oleObject158.bin

oleObject159.bin

oleObject160.bin

image104.wmf
NT

M

oleObject161.bin

oleObject162.bin

image105.wmf
l

NT

S

oleObject163.bin

oleObject164.bin

oleObject9.bin

image106.wmf
2

NT

M

oleObject165.bin

oleObject166.bin

image107.wmf
l

NT

R

oleObject167.bin

image108.wmf
2

NT

NT

NT

S

S

R

l

l

=

oleObject168.bin

oleObject169.bin

image109.wmf
18

>

NT

M

oleObject170.bin

image10.wmf
raw

c

image110.wmf
2

.

0

<

l

NT

R

oleObject171.bin

image111.wmf
1

<

NT

M

oleObject172.bin

oleObject173.bin

oleObject174.bin

image112.wmf
M

S

LTf

¢

oleObject175.bin

image113.wmf
M

S

f

LT

¢

¢

oleObject176.bin

oleObject10.bin

image114.wmf
M

S

f

¢

oleObject177.bin

image115.wmf
M

S

M

S

M

S

f

LTf

LTf

¢

-

¢

¢

×

-

+

×

=

)

97

.

0

1

(

97

.

0

]

1

[

oleObject178.bin

image116.wmf
M

S

M

S

M

S

f

f

LT

f

LT

¢

-

¢

¢

×

-

+

¢

×

=

¢

)

97

.

0

1

(

97

.

0

]

1

[

oleObject179.bin

image117.wmf
t

E

oleObject180.bin

image118.wmf
)

59

(

2

NT

BUF

oleObject181.bin

image11.wmf
å

¹

=

-

-

×

=

127

0

)

(

2

,

0

]

2

[

]

0

[

)

(

)

(

1

k

v

p

MAP

k

dB

dB

k

E

k

E

m

flux

image119.wmf
raw

CT

oleObject182.bin

image120.wmf
uv

CT

oleObject183.bin

image121.wmf
8

-

=

uv

uv

CT

CT

oleObject184.bin

oleObject185.bin

oleObject186.bin

oleObject187.bin

image122.wmf
uv

CT

CT

CT

LT

LT

uv

uv

×

+

×

=

-

1

.

0

9

.

0

]

1

[

oleObject11.bin

oleObject188.bin

image123.wmf
uv

CT

LT

oleObject189.bin

oleObject190.bin

oleObject191.bin

image124.wmf
1

SM

f

oleObject192.bin

oleObject193.bin

image125.wmf
M

S

f

LT

¢

¢

oleObject194.bin

image12.wmf
)

(

]

0

[

k

E

dB

oleObject195.bin

oleObject196.bin

image126.wmf
1

=

¢

M

S

f

oleObject197.bin

image127.wmf
200

2

.

0

³

³

¢

¢

uv

CT

M

S

LT

or

f

LT

oleObject198.bin

image128.wmf
floor

E

image129.wmf
å

-

=

=

1

0

min

min

min

))

(

(

1

N

i

dB

floor

i

i

E

N

E

image130.wmf
sum

m

image131.wmf
Switch

f

oleObject12.bin

image132.wmf
))

0

_

&

&

(!

||

_

(

||

)

1

_

&

&

0

_

&

&

(

||

13200

_

(

||

_

(

||

)

_THR

HI_ENER_LO

(

||

)

_THR

HI_ENER_LO

_

(

_

_

_

_

_

>

==

£

³

==

==

<=

<=

SPARSE

H

SPARSE

H

SPARSE

H

SPARSE

H

SPAESE

H

HIGH

HIGH

f

prev

f

TCX

core

prev

f

prev

f

prev

f

brate

total

HQ

core

prev

E

E

prev

image133.wmf
))

f

_

prev

&

&

f

&(!

&

TCX

core

_

prev

(

||

))

f

_

prev

&

&

f

_

prev

&

&

f

||

brate

_

total

&(

&

HQ

core

_

prev

(

||

)

E

(

||

)

E

_

prev

(

SPARSE

_

H

SPARSE

_

H

SPARSE

_

H

SPARSE

_

H

SPAESE

_

H

HIGH

HIGH

0

1

0

13200

_THR

HI_ENER_LO

_THR

HI_ENER_LO

>

==

£

³

==

==

<=

<=

oleObject199.bin

image134.wmf
HIGH

f

prev

_

image135.wmf
SPARSE

H

f

prev

_

_

image136.wmf
HIGH

f

image137.wmf
SPARSE

H

f

_

image138.wmf
SPARSE

H

f

prev

_

_

image139.wmf
TCX

f

image140.wmf
))

(

||

)

_THR

HI_ENER_LO

((

&

&

))

_THR

SPARSENESS

(

||

)

R

VOICING_TH

(

||

)

COR_THR

((

&

&

)

EL_THR

SIG_HI_LEV

(

_

Sparse

H

High

sum

floor

tot

f

E

S

V

m

E

E

£

³

³

³

³

-

image13.wmf
)

(

]

2

[

k

E

dB

-

image141.wmf
HQ

f

image142.wmf
)

_

&

&

&!

&

13200

_

(

||

))

HYST_FAC

_THR

SPARSENESS

(

&

&

)

HYST_FAC

R

VOICING_TH

(

&

&

)

HYST_FAC

COR_THR

((

||

)

EL_THR

SIG_LO_LEV

(

frame

transient

f

brate

total

S

V

m

E

E

TCX

sum

floor

tot

==

×

<

×

<

×

<

<

-

image143.wmf
TCX

f

image144.wmf
Switch

f

image145.wmf
TCX

f

image146.wmf
SPARSE

H

f

prev

_

_

image147.wmf
SPARSE

H

f

_

image148.wmf
HIGH

E

prev

_

image149.wmf
SPARSE

H

f

prev

_

_

image150.wmf
G_LINE_THR

MDCT_SW_SI

oleObject13.bin

image151.wmf
1

1

=

SM

f

image152.wmf
0

1

=

SM

f

image153.wmf
1

2

=

SM

f

image154.wmf
1

_

=

SWB

UV

f

image155.wmf
i

Vf

image156.wmf
,

i

b

image157.wmf
i

b

image158.wmf
i

Vf

image159.wmf
(

)

2

34

.

0

5

.

0

5

.

0

34

.

0

i

i

i

Vf

b

b

´

-

+

´

+

=

image160.wmf
i

Vf

image14.wmf
m

image161.wmf
(

)

(

)

(

)

256

0

1

£

£

´

+

=

n

for

n

random

Vf

n

code

n

i

e

image162.wmf
320

0

£

£

n

image163.wmf
(

)

(

)

(

)

P

n

g

n

g

n

p

c

b

e

e

e

-

´

+

´

=

2

2

image164.wmf
(

)

(

)

(

)

P

n

g

n

g

n

p

c

b

e

e

e

-

´

+

´

=

2

oleObject200.bin

image165.wmf
(

)

n

rn

wht

image166.wmf
(

)

n

WHT

e

image167.wmf
(

)

(

)

n

rn

scale

n

rn

wht

wht

´

=

image168.wmf
(

)

(

)

2

319

0

2

319

0

)

(

)

(

n

rn

n

scale

wht

i

wht

i

å

å

=

=

=

e

image169.wmf
m

oleObject14.bin

image170.wmf
(

)

(

)

(

)

1

1

-

´

-

=

n

rn

n

rn

n

wht

wht

m

e

image171.wmf
(

)

(

)

(

)

n

n

rn

n

wht

wht

e

a

a

e

´

+

´

=

2

1

1

image172.wmf
(

)

(

)

(

)

n

rn

n

n

wht

wht

´

+

´

=

2

1

1

a

e

a

e

oleObject201.bin

image173.wmf
1

a

image174.wmf
2

a

image175.wmf
(

)

4

/

1

1

i

Vf

=

a

image176.wmf
(

)

(

)

(

)

2

319

0

2

319

0

2

)

(

1

)

(

n

rn

Vf

n

wht

i

i

wht

i

å

å

=

=

Ö

-

´

÷

ø

ö

ç

è

æ

=

e

a

image177.wmf
1

a

image178.wmf
2

a

oleObject15.bin

oleObject202.bin

image179.wmf
(

)

(

)

formant

i

fac

Vf

´

-

´

=

15

.

0

0

.

1

1

a

image180.wmf
(

)

(

)

(

)

(

)

(

)

å

å

=

=

´

-

´

-

´

=

319

0

2

319

0

2

2

)

(

15

.

0

0

.

1

0

.

1

)

(

i

wht

formant

i

i

wht

n

rn

fac

Vf

n

e

a

oleObject203.bin

image181.wmf
formant

fac

image182.wmf
)

(

1

n

e

oleObject204.bin

image183.wmf
2

a

image184.wmf
bits

used

_

image185.wmf
hm

bits

used

_

image15.wmf
flux

image186.wmf
B

Idicator

image187.wmf
B

indicator

oleObject205.bin

image188.wmf
hm

hm

no

B

B

B

idicator

-

=

_

image189.wmf
hm

hm

_

no

B

B

B

indicator

-

=

oleObject206.bin

image190.wmf
)

_

,

max(

_

bits

used

stop

B

hm

no

=

image191.wmf
hm

hm

hm

hm

bits

Index

bits

used

stop

B

_

)

_

,

max(

+

=

image192.wmf
hm

bits

Index

_

image193.wmf
stop

oleObject16.bin

image194.wmf
hm

stop

image195.wmf
B

Idicator

image196.wmf
B

indicator

oleObject207.bin

image197.wmf
hm

indicator

image198.wmf
)

(

/

)

(

1

max

_

n

E

T

E

L

indicator

M

L

n

ABSM

MDCT

PERIOD

M

hm

å

=

×

=

image199.wmf
b

s

´

+

=

i

i

i

avg

thr

image200.wmf
i

thr

image201.wmf
i

avg

image202.wmf
i

s

oleObject17.bin

image203.wmf
b

image204.wmf
÷

ø

ö

ç

è

æ

+

´

-

-

´

=

¢

a

Ntmp

Nmx

b

a

thr

thr

i

i

i

image205.wmf
a

image206.wmf
b

image207.wmf
0

.

0

0

.

1

>

>

³

b

a

image208.wmf
mx

N

image209.wmf
i

Ntmp

image210.wmf
¢

i

thr

image211.wmf
i

Ncnt

image212.wmf
÷

ø

ö

ç

è

æ

+

´

-

´

=

¢

b

Ncnt

Nmx

b

a

thr

thr

i

i

i

image16.wmf
59

...

1

,

0

),

(

=

i

i

BUF

flux

image213.wmf
1

,...,

0

'

,

)

'

(

)

'

(

)

'

(

2

-

=

=

j

Nlag

k

k

Ene

k

corr

k

S

image214.wmf
)

'

(

k

corr

image215.wmf
)

'

(

k

Ene

image216.wmf
j

Nlag

image217.wmf
)

'

(

k

corr

image218.wmf
)

'

(

k

Ene

image219.wmf
j

Nlag

image220.wmf
)

'

(

k

corr

image221.wmf
)

'

(

k

Ene

image222.wmf
å

-

=

=

+

+

=

1

0

])

[

]

'

[

(

~

])

[

(

)

'

(

j

Ncnt

k

k

j

j

j

j

j

k

Idx

k

lag

k

X

k

Idx

X

k

corr

oleObject18.bin

image223.wmf
å

-

=

=

+

+

=

1

0

2

])

[

]

'

[

(

~

)

'

(

j

Ncnt

k

k

j

j

j

k

Idx

k

lag

k

X

k

Ene

image224.wmf
j

Ncnt

image225.wmf
]

[

k

Idx

j

image226.wmf
]

'

[

k

lag

j

image227.wmf
j

k

image228.wmf
j

Ncnt

image229.wmf
]

[

k

Idx

j

image230.wmf
]

'

[

k

lag

j

image231.wmf
j

k

image232.wmf
]

'

[

k

lag

j

image17.wmf
0

£

att

f

image233.wmf
j

k

image234.wmf
j

k

image235.wmf
1

=

at

isIgfTemFl

oleObject208.bin

image236.wmf
1

,

,

1

,

0

),

(

)

(

,

0

])

[

(

)]

(

[

]

[

0

]

[

]

[

]

[

-

=

+

<

£

î

í

ì

>

=

=

nB

k

a

k

t

tb

k

t

tb

X

abs

k

m

X

k

g

tb

X

tb

X

tb

X

tempFlat

K

oleObject209.bin

image237.wmf
1

,

,

1

,

0

),

1

(

)

(

,

0

])

[

(

)]

(

[

]

[

0

]

[

]

[

]

[

-

=

+

<

£

î

í

ì

>

=

=

nB

k

k

t

tb

k

t

tb

X

abs

k

m

X

k

g

tb

X

tb

X

tb

X

dec

dec

dec

tempFlat

K

oleObject210.bin

image238.wmf
]

[

tb

X

dec

oleObject211.bin

oleObject19.bin

image239.wmf
]

[

tb

X

oleObject212.bin

image240.wmf
]

[

tb

X

tempFlat

oleObject213.bin

image241.wmf
8

,

,

2

,

1

),

(

K

=

m

m

a

igfTemp

oleObject214.bin

image242.wmf
1

,

,

1

,

0

),

(

)

(

],

[

)

(

]

[

]

[

1

-

=

+

<

£

-

×

+

=

¢

å

=

nB

k

a

k

t

tb

k

t

m

tb

X

m

a

tb

X

tb

X

tempFlat

M

m

igfTemp

tempFlat

tempFlat

K

oleObject215.bin

image243.wmf
1

,

,

1

,

0

),

(

)

(

,

0

])

[

(

]

[

0

]

[

]

[

]

[

-

=

+

<

£

ï

î

ï

í

ì

>

=

¢

=

¢

nB

k

a

k

t

tb

k

t

tb

X

abs

tb

X

tb

X

tb

X

tb

X

tempFlat

tempFlat

K

oleObject216.bin

image18.wmf
M

S

LTf

¢

image244.wmf
1

,

,

1

,

0

),

(

)

(

,

0

])

[

(

]

[

0

]

[

]

[

]

[

-

=

+

<

£

ï

î

ï

í

ì

>

=

¢

=

¢

nB

k

a

k

t

tb

k

t

tb

X

abs

tb

X

tb

X

tb

X

tb

X

dec

dec

tempFlat

tempFlat

K

oleObject217.bin

image245.wmf
]

[

tb

X

tempFlat

¢

oleObject218.bin

image246.wmf
)

(

b

I

M

¢

D

oleObject219.bin

image247.wmf
)

(

b

I

M

¢

D

oleObject220.bin

image248.wmf
(

)

(

)

1

,

,

2

3

,

13

)

1

(

max

)

(

)

(

,

13

)

1

(

3

,

17

)

1

(

min

)

(

)

(

,

17

)

1

(

-

=

-

-

-

D

-

¢

D

=

D

>

-

D

-

-

D

-

¢

D

=

D

>

-

D

bands

M

M

M

M

M

M

M

M

N

b

b

I

b

I

b

I

b

I

if

b

I

b

I

b

I

b

I

if

K

oleObject221.bin

oleObject20.bin

image249.wmf
1

,..,

4

-

-

=

bands

bands

N

N

b

oleObject222.bin

image250.wmf
1

,..,

4

),

(

-

-

=

bands

bands

N

N

b

b

R

oleObject223.bin

image251.wmf
end

start

k

k

,

oleObject224.bin

image252.wmf
)

(

ˆ

k

X

M

oleObject225.bin

image253.wmf
end

start

k

k

,

oleObject226.bin

oleObject21.bin

image254.wmf
)

(

~

k

H

M

oleObject227.bin

image255.wmf
i

LagIndex

oleObject228.bin

image256.wmf
i

k

oleObject229.bin

oleObject230.bin

image257.wmf
i

end

k

oleObject231.bin

image258.wmf
)

(

l

pul

i

image19.wmf
)

(

i

BUF

flux

oleObject232.bin

image259.wmf
)

(

~

k

X

M

oleObject233.bin

image260.wmf
i

k

oleObject234.bin

image261.wmf
i

end

k

oleObject235.bin

image262.wmf
i

end

i

M

k

k

k

k

X

,....

),

(

~

=

oleObject236.bin

oleObject237.bin

oleObject22.bin

image263.wmf
î

í

ì

=

-

=

+

=

=

+

=

=

=

+

=

<

=

=

=

1

0

1

)

(

~

)

(

0

!

)

(

~

1

0

1

0

i

j

pos

i

j

pos

A

l

pul

end

end

l

l

A

X

l

pul

A

X

if

j

j

SB

j

while

k

pos

l

to

i

i

res

M

i

M

i

width

i

oleObject238.bin

image264.wmf
)

(

,

l

pul

pul

i

i

res

oleObject239.bin

image265.wmf
i

res

pul

oleObject240.bin

image266.wmf
)

(

l

pul

i

oleObject241.bin

image267.wmf
)

(

,

l

pul

pul

i

i

res

oleObject242.bin

oleObject23.bin

image268.wmf
1

,..,

4

-

-

=

bands

bands

N

N

b

oleObject243.bin

image269.wmf
)

(

,

l

pul

pul

b

b

res

oleObject244.bin

image270.wmf
4

-

=

bands

N

b

oleObject245.bin

image271.wmf
t

M

NoiseLevel

fill

M

f

k

b

R

k

k

X

k

X

£

=

=

-

and

0

)

(

such that

for

),

(

ˆ

2

)

(

ˆ

image272.wmf
)

(

1

_

b

g

st

adj

image273.wmf
bands

N

b

,...,

1

,

0

=

image274.wmf
0

)

(

=

b

K

oleObject24.bin

image275.wmf
16

)

(

£

b

L

M

image276.wmf
0

>

b

image277.wmf
)

(

b

Qadj

image278.wmf
36

.

0

)

(

1

_

=

b

g

st

adj

image279.wmf
54

.

0

)

(

1

_

=

b

g

st

adj

image280.wmf
72

.

0

)

(

1

_

=

b

g

st

adj

image281.wmf
last

b

b

<

image282.wmf
)

(

b

Qadj

image283.wmf
54

.

0

)

(

1

_

=

b

g

st

adj

image284.wmf
72

.

0

)

(

1

_

=

b

g

st

adj

image20.wmf
LSAD

f

image285.wmf
0

.

1

)

(

1

_

=

b

g

st

adj

image286.wmf
0

)

1

(

0

)

1

(

)

(

>

+

>

-

=

b

K

and

b

K

if

TRUE

b

Qadj

oleObject246.bin

image287.wmf
)

(

b

K

oleObject247.bin

image288.wmf
b

oleObject248.bin

image289.wmf
0

)

(

=

b

K

oleObject249.bin

image290.wmf
b

oleObject25.bin

oleObject250.bin

image291.wmf
)

(

1

_

b

g

st

adj

oleObject251.bin

image292.wmf
b

oleObject252.bin

image293.wmf
0

.

1

)

(

1

_

<

b

g

st

adj

oleObject253.bin

image294.wmf
0

.

1

)

(

1

_

>

b

g

st

adj

oleObject254.bin

image295.wmf
(

)

)

(

)

(

1

)

(

)

(

1

_

_

b

g

w

w

b

g

st

adj

adj

adj

lim

adj

a

a

-

+

=

image21.wmf
)

(

i

BUF

flux

image296.wmf
3

3

2

3

3

3

)

(

d

x

c

x

b

x

a

x

vc

+

+

+

=

oleObject255.bin

image297.wmf
1

-

=

x

oleObject256.bin

image298.wmf
0

=

x

oleObject257.bin

image299.wmf
1

=

x

oleObject258.bin

image300.wmf
2

=

x

oleObject259.bin

oleObject26.bin

image301.wmf
)

1

(

-

in

v

oleObject260.bin

image302.wmf
)

0

(

in

v

oleObject261.bin

image303.wmf
)

1

(

in

v

oleObject262.bin

image304.wmf
)

2

(

in

v

oleObject263.bin

image305.wmf
3

a

oleObject264.bin

oleObject27.bin

image306.wmf
3

b

oleObject265.bin

image307.wmf
3

c

oleObject266.bin

image308.wmf
3

d

oleObject267.bin

image309.wmf
)

0

(

2

)

1

(

)

1

(

3

in

in

in

v

v

v

b

-

+

-

=

oleObject268.bin

image310.wmf
6

4

)

1

(

)

0

(

)

2

(

)

1

(

3

3

b

v

v

v

v

a

in

in

in

in

-

-

-

+

-

=

oleObject269.bin

oleObject28.bin

image311.wmf
3

3

3

)

0

(

)

1

(

b

a

v

v

c

in

in

-

-

-

=

oleObject270.bin

image312.wmf
)

0

(

3

in

v

d

=

oleObject271.bin

oleObject272.bin

image313.wmf
n

a

oleObject273.bin

image314.wmf
n

b

oleObject274.bin

image315.wmf
n

c

oleObject29.bin

oleObject275.bin

image316.wmf
n

d

oleObject276.bin

image317.wmf
1

-

n

a

oleObject277.bin

image318.wmf
1

-

n

b

oleObject278.bin

image319.wmf
1

-

n

c

oleObject279.bin

image320.wmf
1

-

n

d

image22.wmf
pc

f

oleObject280.bin

image321.wmf
1

+

n

a

oleObject281.bin

image322.wmf
1

+

n

b

oleObject282.bin

image323.wmf
1

+

n

c

oleObject283.bin

image324.wmf
1

+

n

d

oleObject284.bin

image325.wmf
x

oleObject30.bin

oleObject285.bin

image326.wmf
1

0

£

£

x

oleObject286.bin

image327.wmf
1

1

2

1

3

1

1

)

1

(

)

1

(

)

1

(

)

(

-

-

-

-

-

+

+

+

+

+

+

=

n

n

n

n

n

d

x

c

x

b

x

a

x

vc

oleObject287.bin

image328.wmf
1

1

2

1

3

1

)

(

-

-

-

-

+

+

+

=

n

n

n

n

n

d

x

c

x

b

x

a

x

vc

oleObject288.bin

image329.wmf
n

n

n

n

n

d

x

c

x

b

x

a

x

vc

+

+

+

=

2

3

)

(

oleObject289.bin

image330.wmf
1

1

2

1

3

1

1

)

1

(

)

1

(

)

1

(

)

(

+

+

+

+

+

+

-

+

-

+

-

=

n

n

n

n

n

d

x

c

x

b

x

a

x

vc

oleObject31.bin

oleObject290.bin

image331.wmf
)

(

x

v

out

oleObject291.bin

image332.wmf
1

0

£

£

x

oleObject292.bin

image333.wmf
)

(

)

(

)

(

)

(

1

1

1

1

x

vc

w

x

vc

w

x

vc

w

x

v

n

n

n

n

n

n

out

+

+

-

-

+

+

=

oleObject293.bin

image334.wmf
1

-

n

w

oleObject294.bin

image335.wmf
n

w

oleObject32.bin

oleObject295.bin

image336.wmf
1

+

n

w

oleObject296.bin

oleObject297.bin

oleObject298.bin

oleObject299.bin

oleObject300.bin

oleObject301.bin

image337.wmf
n

n

n

n

out

d

x

c

x

b

x

a

x

v

+

+

+

=

2

3

)

(

oleObject302.bin

image23.wmf
R

tilt

image338.wmf
1

1

2

1

3

1

)

1

(

)

1

(

)

1

(

)

(

-

-

-

-

+

+

+

+

+

+

=

n

n

n

n

out

d

x

c

x

b

x

a

x

v

oleObject303.bin

oleObject33.bin

image24.wmf
å

å

=

=

+

×

×

=

15

1

15

1

)

1

(

)

(

)

(

)

(

i

i

R

i

E

i

E

i

E

i

E

tilt

oleObject34.bin

image25.wmf
å

å

=

=

×

+

×

=

15

1

15

1

)

(

)

(

)

1

(

)

(

i

i

R

i

E

i

E

i

E

i

E

tilt

oleObject35.bin

image26.wmf
)

(

i

E

oleObject36.bin

image27.wmf
R

tilt

oleObject37.bin

image28.wmf
59

...

1

,

0

),

(

=

i

i

BUF

tilt

oleObject38.bin

image29.wmf
h

pk

oleObject39.bin

image30.wmf
)

(

2

k

MAP

v

p

oleObject40.bin

image31.wmf
å

=

=

126

64

2

)

(

k

v

p

h

k

MAP

pk

oleObject41.bin

oleObject42.bin

image32.wmf
59

...

1

,

0

),

(

=

i

i

BUF

h

pk

oleObject43.bin

image33.wmf
NT

oleObject44.bin

image34.wmf
2

NT

oleObject45.bin

image35.wmf
l

NT

oleObject46.bin

oleObject47.bin

oleObject48.bin

oleObject49.bin

image36.wmf
(

)

å

=

>

=

126

0

2

55

)

(

k

v

p

k

MAP

NT

oleObject50.bin

oleObject51.bin

oleObject52.bin

oleObject53.bin

